

通用開關控制調光電源配置應用

採用 NU102 搭配 9910 實現非隔離日光燈調光

1. 設計理念

鑒於目前絕大多數的燈具控制方式都是通過簡單的機械式開關完成, 在 LED 燈具大量替換傳統燈具過程中,如何設計出更簡單使用、更輕鬆替換,更綠色使用的 LED 燈具,成為廣大設計者的挑戰性問題。NU102 專門為解決 LED 燈具與現有的開闢實現調光的問題而設計,通過普通的牆面開闢在規定的時間內的開闢動作,實現 LED 燈的亮度調節。

2. 特點:

無需更改現有的開關佈線結構,

線路簡單,超低成本,

高效率,更節能,

使用方便,符合人性化操作

應用廣泛,適合做日光燈,球泡燈,射燈等等。

3. 調光方法

在連接好此電路的開關,在4秒鐘內反復操作開關一次,得到一次調光,根據亮度需求,重複操作選擇得到(75%、100%、25%、50%)相對應的亮度

4. 規格參數

代號		多數	最小	典型	最大	單位	注解
Input			•				•
電壓		交流輸入電壓	90		264	Vac	2 Wire
頻率		交流輸入頻率	47	50/60	63	HZ	
空載輸入功率					1	W	
Output						·	
恒流	輸出電壓				110	V	
	輸出電流		16			mA	
總輸出功率			1		40	W	
連續輸出功率						W	
調光輸出頻率				400		Hz	
過流保護		輸出電流最大				A	Auto-restart
效率		η	50		92	%	
環境			35		95	%	
環境溫度			-20		85	°C	

5. 原理圖

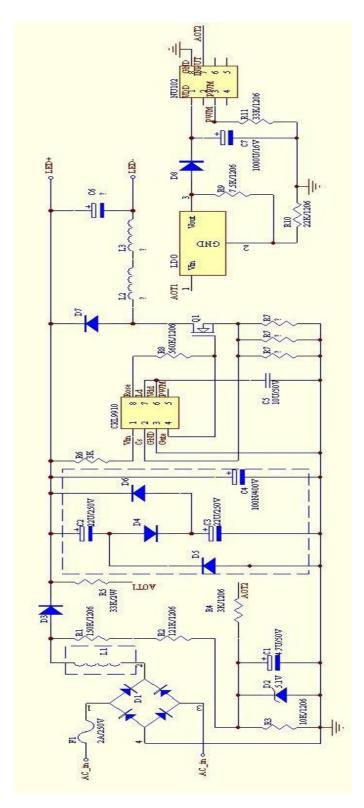


圖 1 原理圖

- 2 - Ver. 01

NumEn Tech.

6. 工作原理表述

此電路原理是通過NU102向CXL9910的PWM腳輸出固定PWM信號(100%、75%、50%、25%),從而得到LED的亮度。(請參閱CXL9910 相關資料,這裡不再描述)

6.1.獲取調光信號

電流經過R1, R2降壓後,R3二端經過D2穩壓管、C1濾波之後得到穩定的DC5V,再經過R4得到信號源。這樣前面的電源每切斷一次,就相當於給NU102發出一個調光信號。這裡說明一下元件D9,在此應用為防止恒流部分的濾波電容的能量在關斷電時倒流,從而無法準確的獲取信號源。

6.2. 準確獲取用戶的調光需求

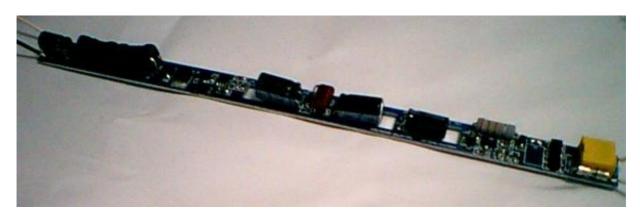
開關間隔時間為4秒內,NU102將認為此時需要改變燈光亮度,亮度被切換到下一個固定的占空比。如果開關間隔時間超過4秒,NU102點認為使用者返回首亮模式。

6.3. 返回首亮模式時間設定

NU102內部本身有一個4秒鐘的設定值,如果設計者需要調整更短的時間,也可以通過給NU102的供電的時間來設定,即調整C7的容量。這個C7是用來給NU102在關電4秒鐘內維持供電的保證,如果此電容設定到3秒就把電量用完,則此時的返回首亮的時間為3秒。以此推算。

6.4. 解決NU102供電

因NU102是低壓5V工作的積體電路,為了能讓NU102工作更可靠穩定,這裡用了一個高壓LDO(450V 耐壓)來實現,電流經過R5(2W/3W電阻,阻值根據輸入電壓決定)為LDO分壓(防LDO降壓過多,散熱不夠,以免燒壞LDO),LDO為NU102提供了5V(Iout max 10mA)電源,R9、R10是為計算出Vout,


6.5.LDO電壓計算公式

LDO晶片中, Vout (3腳) 與GND(2腳)的電壓為1.2V。GND輸出電流為10uA. Vout=1.2 (1+1.2R2/R1) +10uR2

7. 注意事項

- 7.1 C4的高頻電容必不可少且需設計在PFC電路之後,因LDO取電在PFC之前,如果設計在一起則有可能 影響LDO的穩定。
- 7.2 為了更好的相容性,NU102內部有軟啟動設計,實驗發現,一般開關電源在上電瞬間,其各項數值 不是很理想的,為了更有效的保護LED,NU102在電源上電一秒鐘後,再輸出PWM。
- 7.3 為節約編幅,元件參數已標注于原理圖,設計者可根據原理圖列制BOM清單,限於能力表達水準,如果有設計愛好者有不明之處,或瞭解NU102調光IC更廣泛的應用。可以致電,數能科技授權代理商誠信聯科技諮詢。電話:0755-86091963,手機13927400711.何先生

8. 產品實物圖

- 3 - Ver. 01